Design Of A Permanent Magnet Synchronous Generator For A

Nuclear Science Abstracts
AC Motor Control and Electrical Vehicle Applications
Energy Efficiency in Electric Devices, Machines and Drives
Numerical Methods for Energy Applications
Hybrid Electric Vehicles
Design Considerations for Salient Pole, Permanent Magnet Synchronous Motors in Variable Speed Drive Applications
Energy Research Abstracts
The Industrial Electronics Handbook
Five Volume Set
Design of Brushless Permanent-magnet Machines
Design of a Permanent Magnet Motor and a Drive for Cranking Purposes
New Scientist
Mechatronics: Ideas for Industrial Applications
Intelligent Robotics and Applications
Scientific and Technical Aerospace Reports
The Electromagnetic Design of a Permanent Magnet Based Separator
Advanced Linear Machines and Drive Systems
Electromechanical Prime Movers
Magnetic Suspension Technology Workshop
1999 European Wind Energy Conference
Wind and Solar Power Systems
Power Transmissions
Non-linear Electromagnetic Systems
Limits, Modeling and Design of High-Speed Permanent Magnet Machines
Electric Motors and Drives
Computer Field Models of Electromagnetic Devices
The Proceedings of the 9th Frontier Academic Forum of Electrical Engineering
Leak-Free Pumps and Compressors
Handbook
Rare-earth Iron Permanent Magnets
Advanced Theory of Fractional-Slot Concentrated-Wound Permanent Magnet Synchronous Machines
Proceedings of 2019 Chinese Intelligent Systems Conference
The Design of High Performance Mechatronics
- 2nd Revised Edition
Encyclopaedia of Medical Physics
The Rediscovery of Synchronous Reluctance and Ferrite Permanent Magnet Motors
Circular of the Bureau of Standards
Permanent Magnet Materials and Their Application
Permanent Magnet Motor Technology
Magnetic Techniques for the Treatment of Materials
Electromagnetic Fields in Electrical Engineering
Brushless Permanent-magnet Motor Design
Permanent Magnet Design and Application Handbook
Magnets have been objects of fascination for millennia. The new rare-earth iron magnets store 1,000 times the energy of their predecessors, with applications ranging from personal stereos to computer drives to medical scanners. This book offers the first integrated account of the whole field, addressed to physicists, metallurgists and electrical engineers. This volume includes contributions on: field theory and advanced computational electromagnetics; electrical machines and transformers; optimization and interactive design; electromagnetics in materials; coupled field and electromagnetic components in mechatronics; induction heating systems; bioelectromagnetics; and electromagnetics in education. New Scientist magazine was launched in 1956 "for all those men and women who are interested in scientific discovery, and in its industrial, commercial and social consequences". The brand's mission is no different today - for its consumers, New Scientist reports, explores and interprets the results of human endeavour set in the context of society and culture. Written for electrical, electronics, & mechanical engineers responsible for designing & specifying motors, the book provides details of brushless DC & synchronous motors, as well as both radial & axial motor topologies. Beginning with a discussion of the fundamentals of generic motor design, it logically progresses to a set of more advanced, yet easily understandable, concepts for designing brushless permanent-magnet motors. In addition, the author fully explains techniques for magnetic modeling & circuit analysis, shows how magnetic circuit analysis applies to motor design, describes all major aspects of motor operation & design in simple mathematical terms, develops rigorous design equations for radial flux & axial flux motors, & illustrates basic motor drive schemes. All common motor design terms are clearly defined & a wealth of charts, tables & equations are included. This book presents recent advances and developments in control, automation, robotics, and measuring techniques. It presents contributions of top experts in the fields, focused on both theory and industrial practice. The particular chapters present a deep analysis of a specific technical problem which is in general followed by a numerical analysis and simulation, and results of an implementation for the solution of a real world problem. The presented theoretical results, practical solutions and guidelines will be useful for both researchers working in the area of engineering sciences and for practitioners solving industrial problems. This book collects the latest theoretical and technological concepts in the design and control of various linear machines and drive systems. Discussing advances in the new linear machine topologies, integrated modeling, multi-objective optimization techniques, and high-performance control strategies, it focuses on emerging applications of linear machines in transportation and energy systems. The book presents both theoretical and practical/experimental results, providing a consistent compilation of fundamental theories, a compendium of current research and development activities as well as new directions to overcome critical limitations. Motor control technology continues to play a vital role in the initiative to eliminate or at least decrease petroleum dependency and greenhouse gas emissions around the world. Increased motor efficiency is a crucial aspect of this science in the global transition to clean power use in areas such as industrial applications and home appliances—but particularly in the design of vehicles. Summarizes the evolution of motor driving units toward high efficiency, low cost, high power density, and flexible interface with other components AC Motor Control and Electric Vehicle Applications addresses the topics mentioned in its title but also elaborates on motor design perspective, such as back EMF harmonics, loss, flux saturation, and reluctance torque, etc. Maintaining theoretical integrity in AC motor modeling and control throughout, the author focuses on the benefits and simplicity of the rotor field-oriented control, describing the basics of PWM, inverter, and sensors. He also clarifies the fundamentals of electric vehicles and their associated dynamics, motor issues, and battery limits. A powerful compendium of practical
information, this book serves as an overall useful tool for the design and control of high-efficiency motors. Since they entered our world around the middle of the 20th century, the application of mechatronics has enhanced our lives with functionality based on the integration of electronics, control systems and electric drives. This book deals with the special class of mechatronics that has enabled the exceptional levels of accuracy and speed of high-tech equipment applied in the semiconductor industry, realizing the continuous shrink in detailing of micro-electronics and MEMS. As well as the more frequently presented standard subjects of dynamics, motion control, electronics and electromechanics, this book includes an overview of systems engineering, optics and precision measurement systems, in an attempt to establish a connection between these fields under one umbrella. Robert Munning Schmidt is professor in Mechatronic System Design at Delft University of Technology with industrial experience at Philips and ASML in research and development of consumer and high-tech systems. He is also director of RMS Acoustics & Mechatronics, doing research and development on active controlled low frequency sound systems. Georg Schitter is professor at the Automation and Control Institute (ACIN) at Vienna University of Technology with a standing track record in research on the control and mechatronic design of extremely fast precision motion systems such as video rate AFM systems. Adrian Rankers is managing partner of Mechatronics Academy, developing and delivering high level courses to the industrial community, based on industrial experience at Philips in the research and development of consumer and high-tech systems. Jan van Eijk is emeritus professor in Advanced Mechatronics at Delft University of Technology. He is also director of MICE BV and partner at Mechatronics Academy, acting as industrial R&D advisor and teacher with experience at Philips in the research and development of consumer and high-tech systems. The 1999 European Wind Energy Conference and Exhibition was organized to review progress, and present and discuss the wind energy business, technology and science for the future. The Proceedings contain a selection of over 300 papers from the conference. They represent a significant update to the understanding of this increasingly important field of energy generation and cover a full range of topics. The volume set LNAI 11740 until LNAI 11745 constitutes the proceedings of the 12th International Conference on Intelligent Robotics and Applications, ICIRA 2019, held in Shenyang, China, in August 2019. The total of 378 full and 25 short papers presented in these proceedings was carefully reviewed and selected from 522 submissions. The papers are organized in topical sections as follows: Part I: collective and social robots; human biomechanics and human-centered robotics; robotics for cell manipulation and characterization; field robots; compliant mechanisms; robotic grasping and manipulation with incomplete information and strong disturbance; human-centered robotics; development of high-performance joint drive for robots; modular robots and other mechatronic systems; compliant manipulation learning and control for lightweight robot. Part II: power-assisted system and control; bio-inspired wall climbing robot; underwater acoustic and optical signal processing for environmental cognition; piezoelectric actuators and micro-nano manipulations; robot vision and scene understanding; visual and motional learning in robotics; signal processing and underwater bionic robots; soft locomotion robot; teleoperation robot; autonomous control of unmanned aircraft systems. Part III: marine bio-inspired robotics and soft robotics: materials, mechanisms, modelling, and control; robot intelligence technologies and system integration; continuum mechanisms and robots; unmanned underwater vehicles; intelligent robots for environment detection or fine manipulation; parallel robotics; human-robot collaboration; swarm intelligence and multi-robot cooperation; adaptive and learning control system; wearable and assistive devices and robots for healthcare; nonlinear systems and control. Part IV: swarm intelligence unmanned system; computational intelligence inspired robot navigation and SLAM; fuzzy modelling for automation, control, and robotics; development of ultra-thin-film, flexible sensors, and tactile sensation; robotic technology for deep space exploration; wearable sensing based limb motor function rehabilitation; pattern recognition and machine learning; navigation/localization. Part V: robot legged locomotion; advanced measurement and machine vision system; man-machine interactions; fault detection, testing and diagnosis; estimation and identification; mobile robots and intelligent autonomous systems; robotic vision, recognition and reconstruction; robot mechanism and design. Part VI: robot motion analysis and planning; robot design, development and control; medical robot; robot intelligence, learning and linguistics; motion control; computer integrated manufacturing; robot cooperation; virtual and augmented reality; education in mechatronics engineering; robotic drilling and sampling technology; automotive systems; mechatronics in energy systems; human-robot interaction. This book reflects changes that have occurred during the last two decades in theoretical understanding and practical implementation of magnetic techniques in materials treatment. Research and development needs, based on the current strategic thinking and on principles of sustainable development are outlined. Development of magnetic separators based on powerful permanent magnetic materials, construction of reliable superconducting separators, design of efficient eddy-current separators and industrial implementation of magnetic carriers and magnetic fluids are examples of innovative changes that have taken place during the last twenty years. The book reflects the current technological trends and re-positions the research, development and practice of magnetic methods of material treatment in such areas as minerals beneficiation, recycling, waste treatment and biomedical and clinical applications. A survey of leak-free centrifugal and positive displacement pumps -- Properties and design criteria for magnetic drives on pumps -- Zero-leakage pumps equipped with permanent magnetic drive -- Leak-free centrifugal pumps in plastic -- Canned-motor pumps: an important contribution to leakage-free operation -- Standardized chemical pump with canned motor in flameproof enclosures -- Canned motor and magnetic drive systems: a comparison -- Reciprocating metering pumps in leak-free design -- Leakage-free metering of fluids in
fully automated processes -- Process diaphragm pumps -- Diaphragm compressors -- Liquid ring vacuum pumps and compressors with magnetic drive -- Leak-proof Roots vacuum pumps. Covering the design and applications of permanent magnets, this study lists properties of over 400 materials and presents diverse magnet information needed to design products rather than present theory. Appendices provide demagnetisation curves and magnetic/physical properties. Brushless permanent-magnet motors provide simple, low maintenance, and easily controlled mechanical power. Written by two leading experts on the subject, this book offers the most comprehensive guide to the design and performance of brushless permanent-magnetic motors ever written. Topics range from electrical and magnetic design to materials and control. Throughout, the authors stress both practical and theoretical aspects of the subject, and relate the material to modern software-based techniques for design and analysis. As new magnetic materials and digital power control techniques continue to widen the scope of the applicability of such motors, the need for an authoritative overview of the subject becomes ever more urgent. Design of Brushless Permanent-Magnet Motors fits the bill and will be read by students and researchers in electric and electronic engineering. Co-published by the European Medical Imaging Technology e-Encyclopaedia for Lifelong Learning (EMITEL) consortium and supported by the International Organization for Medical Physics (IOMP), Encyclopaedia of Medical Physics contains nearly 2,800 cross-referenced entries relating to medical physics and associated technologies. Split into two conveniences, this book includes the original, peer-reviewed research papers from the 9th Frontier Academic Forum of Electrical Engineering (FAFEE 2020), held in Xi'an, China, in August 2020. It gathers the latest research, innovations, and applications in the fields of Electrical Engineering. The topics it covers include electrical materials and equipment, electrical energy storage and device, power electronics and drives, new energy electric power system equipment, IntelliSense and intelligent equipment, biological electromagnetism and its applications, and insulation and discharge computation for power equipment. Given its scope, the book benefits all researchers, engineers, and graduate students who want to learn about cutting-edge advances in Electrical Engineering. Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database. This Special Issue deals with improvements in the energy efficiency of electric devices, machines, and drives, which are achieved through improvements in the design, modelling, control, and operation of the system. Properly sized and placed coils of a welding transformer can reduce the required iron core size and improve the efficiency of the welding system operation. New structures of the single-phase field excited flux switching machine improve its performance in terms of torque, while having higher back-EMF and unbalanced electromagnetic forces. A properly designed rotor notch reduces the torque ripple and cogging torque of interior permanent magnet motors for the drive platform of electric vehicles, resulting in lower vibrations and noise. In the field of modelling, the torque estimation of a Halbach array surface permanent magnet motor with a non-overlapping winding layout was improved by introducing an analytical two-dimensional subdomain model. A general method for determining the magnetically nonlinear two-axis dynamic models of rotary and linear synchronous reluctance machines and synchronous permanent magnet machines is introduced that considers the effects of slotting, mutual interaction between the slots and permanent magnets, saturation, cross saturation, and end effects. Advanced modern control solutions, such as neural network-based model reference adaptive control, fuzzy control, senseless control, torque/speed tracking control derived from the 3D non-holonomic integrator, including drift terms, maximum torque per ampere, and maximum efficiency characteristics, are applied to improve drive performance and overall system operation. The latest developments in the field of hybrid electric vehicles Hybrid Electric Vehicles provides an introduction to hybrid vehicles, which include purely electric, hybrid electric, hybrid hydraulic, fuel cell vehicles, plug-in hybrid electric, and off-road hybrid vehicular systems. It focuses on the power and propulsion systems for these vehicles, including issues related to power and energy management. Other topics covered include hybrid vs. pure electric, HEV system architecture (including plug-in & charging control and hydraulic), off-road and other industrial utility vehicles, safety and EMC, storage technologies, vehicular power and energy management, diagnostics and prognostics, and electromechanical vibration issues. Hybrid Electric Vehicles, Second Edition is a comprehensively updated new edition with four new chapters covering recent advances in hybrid vehicle technology. New areas covered include battery modelling, charger design, and wireless charging. Substantial details have also been included on the architecture of hybrid excavators in the chapter related to special hybrid vehicles. Also included is a chapter providing an overview of hybrid vehicle technology, which offers a perspective on the current debate on sustainability and the environmental impact of hybrid and electric vehicle technology. Completely updated with new chapters, Hybrid Electric Vehicles, Second Edition is a great resource for researchers and practitioners in the automotive industry, as well as for graduate students in automotive engineering. This book focuses on the analytical modeling of fractional-slot concentrated-wound (FSCW) interior permanent magnet (IPM) machines and establishes a basis for their magnetic and electrical analysis. Aiming at the precise modeling of FSCW IPM machines’ magnetic and electrical characteristics, it presents a comprehensive mathematical treatment of the stator magneto-motive force (MMF), the IPM rotor non-homogeneous magnetic saturation, and its airgap flux density. The FSCW stator spatial MMF harmonics are analytically formulated, providing a basis on which a novel heuristic
algorithm is then proposed for the design of optimal winding layouts for multiphase FSCW stators with different slot/pole combinations. In turn, the proposed mathematical models for the FSCW stator and the IPM rotor are combined to derive detailed mathematical expressions of its operational inductances, electromagnetic torque, torque ripple and their respective subcomponents, as a function of the machine geometry and design parameters. Lastly, the proposed theories and analytical models are validated using finite element analysis and experimental tests on a prototype FSCW IPM machine.

Computer Field Models of Electromagnetic Devices, volume 34 in the book series Studies in Applied Electromagnetics and Mechanics is devoted to modeling and simulation, control systems, testing, measurements, monitoring, diagnostics and advanced software. The contents is dominated by the latest problems of applied electrical engineering, micro electromechanics, biosensor technology and biomagnetism. The book covers the numerical calculation methods for the design and optimization of sensors, actuators and electric machines, as well as the treatment of inverse problems, in materials testing and in the field of medicine in particular. Other central topics are the material properties and their simulation and much consideration is given to micro-electromechanics. This book offers an essential compendium on the analysis and design of synchronous motors for variable-speed applications. Focusing on synchronous reluctance and ferrite permanent-magnet (PM) synchronous reluctance machines, it provides a broad perspective on three-phase machines for variable speed applications, a field currently dominated by asynchronous machines and rare-earth PM synchronous machines. It also describes synchronous reluctance machines and PM machines without rare-earth materials, comparing them to state-of-the-art solutions. The book provides readers with extensive information on and finite element models of PM synchronous machines, including all relevant equations and with an emphasis on synchronous-reluctance and PM-assisted synchronous-reluctance machines. It covers ferrite-assisted machines, modeled as a subcase of PM-assistance, fractional slot combinations solutions, and a quantitative, normalized comparison of torque capability with benchmark PM machines. The book discusses a wealth of techniques for identifying machine parameters, with an emphasis on self-commissioning algorithms, and presents methods for automated machine design and optimization, including a software tool developed for this purpose. Addressing an important gap in the field of PM-less and less-PM electrical machines, it is intended as a self-contained reference guide for both graduate students and professional machine designers, and as a useful text for university courses on automated and/or optimized design of electrical machines and drives.

This book showcases new theoretical findings and techniques in the field of intelligent systems and control. It presents in-depth studies on a number of major topics, including: Multi-Agent Systems, Complex Networks, Intelligent Robots, Complex System Theory and Swarm Behavior, Event-Triggered Control and Data-Driven Control, Robust and Adaptive Control, Big Data and Brain Science, Process Control, Intelligent Sensor and Detection Technology, Deep learning and Learning Control, Guidance, Navigation and Control of Aerial Vehicles, and so on. Given its scope, the book will benefit all researchers, engineers, and graduate students who want to learn about cutting-edge advances in intelligent systems, intelligent control, and artificial intelligence.

This book provides a thorough guide to the use of numerical methods in energy systems and applications. It presents methods for analysing engineering applications for energy systems, discussing finite difference, finite element, and other advanced numerical methods. Solutions to technical problems relating the application of these methods to energy systems are also thoroughly explored. Readers will discover diverse perspectives of the contributing authors and extensive discussions of issues including: • a wide variety of numerical methods concepts and related energy systems applications; • systems equations and optimization, partial differential equations, and finite difference methods; • methods for solving nonlinear equations, special methods, and their mathematical implementation in multi-energy sources; • numerical investigations of electrochemical fields and devices; and • issues related to numerical approaches and optimal integration of energy consumption. This is a highly informative and carefully presented book, providing scientific and academic insight for readers with an interest in numerical methods and energy systems. There is a growing number of applications that require fast-rotating machines; motivation for this thesis comes from a project in which downsized spindles for micro-machining have been researched. The thesis focuses on analysis and design of high-speed PM machines and uses a practical design of a high-speed spindle drive as a test case. Phenomena, both mechanical and electromagnetic, that take precedence in high-speed permanent magnet machines are identified and systematized. The thesis identifies inherent speed limits of permanent magnet machines and correlates those limits with the basic parameters of the machines. The analytical expression of the limiting quantities does not only impose solid constraints on the machine design, but also creates the way for design optimization leading to the maximum mechanical and/or electromagnetic utilization of the machine. The models and electric-drive concepts developed in the thesis are evaluated in a practical setup.

Electric Motors and Drives: Fundamentals, Types and Applications, Fifth Edition is intended primarily for non-specialist users or students of electric motors and drives, but many researchers and specialist industrialists have also acknowledged its value in providing a clear understanding of the fundamentals. It bridges the gap between specialist textbooks (too analytical for the average user) and handbooks (full of detail but with little insight) providing an understanding of how each motor and drive system works. The fifth edition has been completely revised, updated and expanded. All of the most important types of motor and drive are covered, including d.c., induction, synchronous (including synchronous reluctance and salient Permanent Magnet), switched reluctance, and stepping. There has been significant innovation in this area since the fourth edition, particularly in the automotive, aircraft and industrial sectors, with novel motor...
topologies emerging, including hybrid designs that combine permanent magnet and reluctance effects. We now include a physical basis for understanding and quantifying torque production in these machines, and this leads to simple pictures that illuminate the control conditions required to optimise torque. The key converter topologies have been brought together, and the treatment of inverter switching strategies expanded. A new chapter is devoted to the treatment of Field Oriented control, reflecting its increasing importance for all a.c. motor drives. A unique physically-based approach is adopted which builds naturally on the understanding of motor behaviour developed earlier in the book: the largely non-mathematical treatment dispels much of the mystique surrounding what is often regarded as a difficult topic. Helps users acquire knowledge and understanding of the capabilities and limitations of motors and drives without struggling through unnecessary math and theory. Presents updated material on the latest and most widely-used motors and drives, including brushless servo motors. Includes additional diagrams and worked examples throughout this updated edition. Includes a physical basis for the understanding and quantifying torque production. Industrial electronics systems govern so many different functions that vary in complexity—from the operation of relatively simple applications, such as electric motors, to that of more complicated machines and systems, including robots and entire fabrication processes. The Industrial Electronics Handbook, Second Edition combines traditional and new The importance of permanent magnet (PM) motor technology and its impact on electromechanical drives has grown exponentially since the publication of the bestselling second edition. The PM brushless motor market has grown considerably faster than the overall motion control market. This rapid growth makes it essential for electrical and electromechanical engineers and students to stay up-to-date on developments in modern electrical motors and drives, including their control, simulation, and CAD. Reflecting innovations in the development of PM motors for electromechanical drives, Permanent Magnet Motor Technology: Design and Applications, Third Edition demonstrates the construction of PM motor drives and supplies ready-to-implement solutions to common roadblocks along the way. This edition supplies fundamental equations and calculations for determining and evaluating system performance, efficiency, reliability, and cost. It explores modern computer-aided design of PM motors, including the finite element approach, and explains how to select PM motors to meet the specific requirements of electrical drives. The numerous examples, models, and diagrams provided in each chapter facilitate a lucid understanding of motor operations and characteristics. This 3rd edition of a bestselling reference has been thoroughly revised to include: Chapters on high speed motors and micromotors Advances in permanent magnet motor technology. Additional numerical examples and illustrations. An increased effort to bridge the gap between theory and industrial applications. Modified research results. The growing global trend toward energy conservation makes it quite possible that the era of the PM brushless motor drive is just around the corner. This reference book will give engineers, researchers, and graduate-level students the comprehensive understanding required to develop the breakthroughs that will push this exciting technology to the forefront. Comprehensive design text for permanent magnets and their application. This book provides technological and socio-economic coverage of renewable energy. It discusses wind power technologies, solar photovoltaic technologies, large-scale energy storage technologies, and ancillary power systems. In this new edition, the book addresses advancements that have been made in renewable energy: grid-connected power plants, power electronics converters, and multi-phase conversion systems. The text has been revised to include up-to-date material, statistics, and current technology trends. Three new chapters have been added to cover turbine generators, AC and DC wind systems, and recent advances solar power conversion. Discusses additional renewable energy sources, such as ocean, special turbines, etc. Covers system integration for solar and wind energy. Presents emerging DC wind systems. Includes coverage on turbine generators. Updated sections on solar power conversion. It offers students, practicing engineers, and researchers a comprehensive look at wind and solar power technologies. It is designed as a reference and can serve as a textbook for senior undergraduates in a one-semester course on renewable power or energy systems. This book presents papers from the International Conference on Power Transmissions 2016, held in Chongqing, China, 27th-30th October 2016. The main objective of this conference is to provide a forum for the most recent advances, addressing the challenges in modern mechanical transmissions. The conference proceedings address all aspects of gear and power transmission technology and a range of applications. The presented papers are catalogued into three main tracks, including design, simulation and testing, materials and manufacturing, and industrial applications. The design, simulation and testing track covers topics such as new methods and designs for all types of transmissions, modelling and simulation of power transmissions, strength, fatigue, dynamics and reliability of power transmissions, lubrication and sealing technologies and theories, and fault diagnosis of power transmissions. In the materials and manufacturing track, topics include new materials and heat treatment of power transmissions, new manufacturing technologies of power transmissions, improved tools to predict future demands on production systems, new technologies for ecologically sustainable productions and those which preserve natural resources, and measuring technologies of power transmissions. The proceedings also cover the novel industrial applications of power transmissions in marine, aerospace and railway contexts, wind turbines, the automotive industry, construction machinery, and robots. Copyright code: 8b75e637be89fe5cc65f406c7827f6ec9